features_scagnostics_wide <- features %>%
group_by(feature) %>%
summarise(calc_scags(x,y))
# Look at the output
features_scagnostics_wide[1:5, 1:6]
# A tibble: 5 × 6
feature outlying stringy striated striated2 clumpy
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 barrier 0 0.756 0.231 0.0588 0.810
2 clusters 0.0551 0.703 0.272 0.0828 0.802
3 discrete 0 0.796 0.326 0.108 0.949
4 disk 0 0.711 0.26 0.108 0.913
5 gaps 0 0.714 0.287 0.075 0.908